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Abstract—Modern vehicles utilise an increasingly growing
amount of digitally controlled devices for sensing, actuation,
control and other purposes. All of these devices need to com-
municate with each other to facilitate their operation and many
modern vehicles facilitate this communication through the use of
CAN (controller area network) bus. This level of sophistication
however has not been present in classical vehicles that are now
being converted to electric drivetrains. This paper presents the
development and testing of a clean slate CAN communication
protocol tailored to implementation in cars converted to electric
drivetrains devoid of pre-existing digital control systems for their
body electronics. The project will document the creation of both
a software stack for the control unit and peripherals associated
with the demonstration system as well as the electronic hardware
in which the software will run. The performance of this system
will then be tested rigorously and the suitability of the system
for its intended purpose will be evaluated. By documenting this
process and making the designs and code freely available, this
paper aims to provide insights into the challenges and guidance
for any future EV conversion projects or a basis for their CAN
communication system should they wish to utilise the protocol
developed in this research endeavour.

A. Abbreviations and Acronyms

CAN (Controller Area Network) MCU (micro controller
unit) IC (integrated circuit)

I. INTRODUCTION
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Fig. 1. In situ example of the demonstration system

the question that this research will attempt to answer is:
can a can bus protocol be created to suit a converted electric
vehicle?

to answer this question the first step is to conduct a detailed
review of prior literature to both determine that the research is
novel and that there is not already an answer to this question.
if it is determined that the research is novel then this initial
review can then be broadened to begin learning the topic and
what will be required to begin work on developing this project.
this research will be focused on articles about the can bus and
existing protocols developed for it as well as current standards
used for vehicle control. The leanings from this process are
detailed in the following literature review section of this report.

in order to develop the can bus protocol, that is the subject
of this research, hardware will also have to be produced to run
the software that is developed. university technicians suggested
that a portion of the whole cars body electronics system should
be selected and recreated in a bench top form that would have
a system present with sensing, control and actuation to enable
a full piece of demonstration software to be developed on it.

The objective of this research then is to produce a function-
ing fore node demonstration of an automatic wiper system. A
mock-up this is shown in Figure 1, consisting of a rain sensor
node, user input node, a wiper motor controller node and a
body control module node to coordinate the activities of the
other nodes.

To achieve its functionality this system must provide low
latency between nodes without missing any commands and
not over-saturating the CAN bus which would increase latency.
The communication scheme between all nodes in the system
is shown in Figure 2. This shows the flow of information
from the user input to the body control unit which deals with
deciding whether or not input from the rain sensor is required
to set the state of the wiper controller. The CAN system
to be developed will also aim to be able to communicate
between modules without requiring the body control unit while
not interrupting functionality to increase the flexibility of the
protocol.

A. Literature review

The three sources I looked at initially to gain an under-
standing of the topic were several web articles around the
CAN open protocol(in Automation CiA) as well as the
protocol’s GIT hub(in Automation CiA), a paper written
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Fig. 2. Proposed information flow between nodes

about the development of a can bus system for CubeSat
applications(Scholz et al. 2018) and another paper about the
development of a can bus communication structure for electric
vehicles(Ran et al. 2010). These sources sources give me a
good understanding of how systems have been done in the
past and give me some starting points for working on my
system, such as having a state engine to govern the primary
behaviour of each individual node in the system.

II. DEVELOPMENT
A. Hardware Requirement Analysis

This project is focused on the development a CAN protocol
as well as the supporting software to implement said protocol
and demonstrate its functionality, therefore hardware selection
must balance two factors predominantly. Firstly to ease devel-
opment and enable rapid development time, the project should
stick to a common development environment which will have
wide support to enable easy prototyping and secondly appro-
priate selection of controllers for the automotive environment.
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Fig. 3. system block diagram

10 requirements will not be very large for this project, as
to meet the requirements The selected microcontroller must
support only a small number of general input and output GPIO
connections and a single SPI connection to the CAN module.
In the final implementation of the system other connections
such as one or more i2c busses may be called for but due

to the tools being used for tis project, namely platform io,
converting the code to run on another microcontroller with
grater hardware support will not pose any major challenge.

B. Hardware Review

The three suppliers identified were Espressif, Arduino and
STMicroelectronics.

The ESP 32 microcontroller from Espressif is an especially
interesting offering as it has an onboard CAN bus controller
(Systems 2024) that would remove the necessity of a separate
entire can module but would still need a transceiver module
such as a TJA1050(Semiconductors 2024). The ESP32 can
be programmed with the Arduino environment as well as
Espressif’s native ESP-IDF giving it the same wide range of
software compatibility as an Arduino.

STMicroelectronics offers a range of microcontrollers spe-
cialised for different purposes and some of these are designed
to support automotive applications such as the stm8 and SPC5
microcontrollers(STMicroelectronics 2024a).

Arduino offers a large range of microcontrollers suited to a
variety of purposes. The development environment is also very
widely supported by large amounts of software and hardware.
This can be leveraged to increase the pace of development.
It is also possible that software developed in the Arduino
and development environment may be ported to other more
appropriate microcontrollers that are not suited to this low-
cost development project.

For the selection of a CAN bus module, there was one
obvious choice due to its abundance and support. This module
features an MCP2515(Technology 2024) CAN controller and
a TJIA1010(Technology 2024) CAN transceiver two widely
supported pieces of hardware. The module features support for
multiple development environments including Arduino, ESP
IDF and STM cube IDE. It will be compatible with any of
the considered microcontrollers.

C. Hardware Selection

An Arduino nano was chosen as the most appropriate micro-
controller for this project. This decision was made because the
Arduino offers all of the functionality required to accomplish
this project scope and its familiarity and software support will
aid in project swiftness.

The ESP32 was not chosen as utilising an Arduino or
STM32 and a separate CAN bus breakout board would allow
for greater ease of development due to existing stand-alone
integrated CAN controller and transceiver modules having
greater existing software support.

the STM32 modules were rejected as they were both cost-
prohibitive for the budget of this project and using automotive-
rated hardware is of less importance at this stage in the project.
Additionally, in the case of the SPCS5, it uses a non-standard
architecture that would significantly increase development and
testing times.

The stm8 however should be evaluated for future work as
it is rated for automotive applications while also being com-
patible with the Arduino development environment. meaning
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Fig. 4. Arduino pin out

that with minimal porting it could be compatible with the
software developed for this project in the Arduino development
environment(STMicroelectronics 2024b).

Fig. 5. Test hardware shown without Ethernet cable completing the CAN bus

D. supporting hardware and Assembly of the demonstration
system

with all hardware selection now made the focus turns
to the implementation of the hardware in to a functioning
demonstration system. To do this all the electronics will be
brought together on bread boards. Bread boards are a tool that
allows for easy and rapid prototyping of electrical systems
using a pin grid system. 4 bread joined together as can be
seen in (FIG) will be used for this project. Each breadboard
in the prototype will represent an individual CAN node.

E. Programming environment

Development was undertaken using three main pieces of
software. Firstly, backup and version control were handled
using GitHub. Software development was done on the VS code
development environment with the platform IO extension to
enable compiling for and interfacing with the micro controller.

Version control is an imperative part of any software devel-
opment project. Cloud-based backup and access to previous
versions of the code allow for easier review and debugging.

git hub allowed for the easy creation of a branch of
software to be created for each of the 4 different nodes in the
demonstration system being built. allowing the separation of
all the changes from the program’s core to be easily managed.

Platform IO is an excellent tool for hardware-focused de-
velopment involving micro controllers. It supports a very wide
range of micro controllers and development environments. All
three of the micro controllers considered for this research, the
ESP32 STM32 and Arduino Nano, have their native devel-
opment environment supported, ESP-IDF for the ESP32 and
cube IDE for the STM32, as well as the Arduino development
environment for all three.

As well as this it is also able to provide tools such as
software and hardware debugging, serial interfacing library
management and compilation with easy search functionality.
It also enables switching between micro controllers which
has been very useful in this project, as development was
started with a single Arduino Uno before specific hardware
was acquired to support all four CAN modules. This required
porting the software from the Arduino Uno to the Arduino
Nano which was all seamlessly accomplished through the use
of platform IO.

with the chosen hardware the best language to program in is
the native Arduino language. this language is a derivative from
c/c++ that has been modified for ease of use and intuitiveness
as well as had hardware compatibility added to it allowing the
user to interact with the devices 10 and internal hardware such
as the EAPROM (ref for ardunio langage)

the git hub (section that talks about open scorsing project
an the benafitsh ther off) (ref to git hub)

F. Programming Strategy

The above figure shows the structure of the CAN data
messages used in this protocol. For this research only the
standard 11-bit Identifier CAN messages and not the extended
29-bit Identifier messages have been used.



CAN Data Structure
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Fig. 6. layout of the can frame and the structure of the data within it

In this protocol, the CAN ID is used by the CAN module to
identify whether a message put on the CAN bus is relevant to
a specific node. This is done using the filtering and masking
capabilities of the MCP2515 CAN controller IC. The protocol
uses a mask to check the first three bits of the 11-bit CAN ID
and then only accepts a message and stores it in the buffer if
it has one of the two CAN IDs associated with the node.

The message frame is broken into 3 distinct sections. The
first section of two bytes deals with identifying the node
command that the message is related to and whether the
command should be started or suspended. The next section has
4 bytes. These four bytes are the function settings. These will
be passed into a function when it’s run and may affect what it
does. The first bytes are reserved for a time interval variable
for node commands that use it this time interval variable will
determine the interval between messages sent to the CAN bus.
Finally, the last section of two bytes, which is also passed
into the function, is a return address. This may be used by
a function to specify the address to send a message if the
destination for the message is not fixed.

G. Program Review

Review of relevant code with programming examples

std ::map<byte , FunctionPtr> functionDictionary={
{0x10, setState},
{0x20, testInterface_wiperMotorOnce },
{0x21, testInterface_wiperMotorSeting},
{0x30, exampleNodeFunction}

}

void runNodeCommand(unsigned char command([8]){
auto funcld=functionDictionary . find (command[1]);
if (funcld!=functionDictionary .end()&&command[0]==0x01){
unsigned char functionSetings[6];
memcpy (functionSetings , command+2, 6);
FunctionPtr func=funcld—>second;
func (functionSetings );

}

Listing 1. Function dictionary and the Node function running system C++
code 1

This is an example of a function dictionary and the function
running system in the core of the node programs. In this case,
it is the wiper motor node. The dictionary shows functions and
their associated addresses. These are called node commands.

When a message is received by a node, it is passed into
the runNodeCommand function. This function then strips out
the first two bytes of the message. Bite one indicates whether
the node command should be run or not and the second bite
indicates what program function should be run by specifying
the address of a function in the function dictionary.

The runNodeCommand function then strips away the first
two bytes of information and passes through the remaining 6
bytes as the function settings.

This scheme of operation allows for one controller to easily
handle running multiple functions only when they are required
without using extensive switch cases or “else if” statements.
It also increases the ease at which a program can be modified,
as instead of editing a large switch case or other method of
dealing with incoming information, the user must only write
their function and add it to the function dictionary. Then it
will automatically be run and dealt with whenever a message
calling it is received by the node it has been implemented on.

case RUN_ACTIVE:
receiveCAN (message );
runNodeCommand (message );
break ;

Listing 2. Active response system state C++ code 1

case RUN_REACTIVE:
if (receiveCAN (message)){
runNodeCommand (message );
}

break;

Listing 3. Reactive response system state C++ code 1

The use of the run”NodeCommand function discussed previ-
ously enables a very streamlined main program loop. The only
things that are done in main.cpp are initialising the locally used
variable for received CAN messages setting the initial state
for the state machine and using the setup function in the setup
state such as enabling serial output as well as the beginning of
the can bus and configuring hardware-specific settings. Finally,
switching the state to RUN when it is finished.

The main program loop will then only have to include
two functions. firstly, “receiveCAN()” the function that checks
for a new message every loop and “runNodeCommand()” the
function that will take the message respond appropriately to
it.

There are however two RUN states RUN ACTIVE and RUN
REACTIVE the code for which is shown in Figures X and
Y. Where RUN ACTIVE runs a node command in the CAN
buffer every process cycle and RUN REACTIVE only runs a
node command when a new command is received. These two
states can be toggled between by using the “setState()” node
command should the function of the node call for it.

III. TESTING
A. Discussion of useful testing metrics

In the testing portion of this project there are two aspects
of the system that should be tested to ensure that the system
will work in the application that it is envisioned for. Firstly, the
behavior of the system can be tested as the system is relatively
simple and there are only a small number of possible input and
output states. Secondly the ability of the system to function
over the distances of cable found in a vehicle should be tested
and quantified to ensure that the system will still function
when installed in a vehicle.



B. validating system behavior

During the development of the demonstration can system,
incremental testing had been involved to verify that the com-
ponents of the system are working as they should be. The
system as a whole has also been tested to ensure its integrated
behavior has been correct. However to ensure that there are no
erroneous behaviors a rigorous testing of inputs and outputs
must be conducted to ensure that the system behaves exactly
how we have set out in the system design. To do this we will
conduct a trial where all possible inputs will be tested and
there outputs recorded. We will record not only the states of
the system inputs and outputs but also the debug LEDs to
ensure behavior on the CAN bus is as expected.

C. validation and quantification of CAN signal integrity over
vehicle relevant distances

Fig. 7. Test system shown with the Ethernet cable used to test the systems
performance over distance

To ensure that this bus system will work with vehicle
relevant distances, part of the testing scheme is to transmit
the can information between controllers separated by a large
amount of cable. To accomplish this, the signal is run back and
forward through a 47 metre Ethernet cable three times giving
a total maximum run length of approximately 141 metres. It is
suggested the typical maximum run length of a vehicle wiring
harness is up to 22(Olbrich & Lackinger 2022). Although this
is based on high voltage wires, we would expect control cables
to be of similar a length so if the system still functions under
these conditions we can expect that the system will function
in its intended environment with a very large safety margin.
We can also assume that there will be no issues induced by
the length of the wiring harness for any larger road vehicles
such as trucks.

There are two tests that we will perform, firstly the sys-
tem will be connected over Ethernet in progressively longer
lengths; 47m, 94m and 141m and functionality will be tested.
Assuming the system remains functional at the maximum test
length the test will then move on to the second section. This
second section involves the quantification of performance. The
CAN bus will be connected to an oscilloscope and the signal
voltage will be measured at a range of lengths. Om*, 47m,
94m and 141m. Three measurements of the peek to peek

Measure

12.74kHz?

Fig. 8. an example of the data gathering approach using an oscilloscope

voltage will be taken at each length and plotted. This will
allow the calculation of the attenuation of the signal as well
as extrapolation of the voltage drop to calculate where it will
drop bellow the minimum signalling voltage thus suggesting
a maximum buss length using the CATS Ethernet cable being
used in these tests.

*it is important to note that in this context the Om refers to
0 meters of Ethernet cable. however, there will still be a small
amount of solid core bread board wire connecting parts of the
can bus although due to its very short length its effect will be
negligible and thus will be ignored.
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Fig. 9. Graph showing the peak to peak voltage and attenuation in DB of
the CAN signal over a range of cable lengths

To test the effects of length on the signal strength measure-
ments were taken of the peak to peak voltage of the signal
transmitted on the X line on the other side of the Ethernet
cable run from the transmitting module. An average of 10
measurements per cable length were taken of the peak peak
voltage and then plotted. As well as this, the attenuation in
decibels was calculated at each cable length and also plotted.



IV. DEDUCTION OF FURTHER INVESTIGATION

The inception of this research project came about because
a project was ongoing at UWE to convert a classic Mini
Cooper to an electric drive train. As a part of this project
the aim was also to install modern body electronics such as
automatic wipers electrically driven and controlled windows
and other modern digitally controlled body electronics such as
indicators, headlamps, ETC... This project aimed to provide
a CAN protocol for this system to run on, as well as creating
a desktop prototype of a single full system in, this case
automatic wipers. However, the scope was limited to use
simulated inputs and outputs to help with project timelines
and costs. Now that the system has been proven out, further
work can be done to demonstrate the systems functionality
with actual automotive relevant hardware.

This can take two forms. Firstly, modifying the current
system to interface with the actual automotive components that
will be used in a final system, the wiper motor rain sensor and
car wiper selector control. This will increase the confidence
in the system and prove out further work such as moving
on to creating more final prototype electronics that could be
integrated into an actual vehicle.
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V. APPENDIX

A. Matlab code used to process signal data

LAO = [12,12.8,11.2];
L47 = [8.,7.2,7.2];

L94 = [7.2.6.4,6.4];
L141 = [5.6.5.6.4.81;

% Define cable lengths
cable_lengths = [0, 47, 94, 141]; % Cable lengths in meters

% Define arrays of voltage peak—to—-peak values for each cable length

voltage_peak_to_peak_Om = [12,12.8,11.2]; % Array of voltage peak—to—peak values for 10 meters
voltage_peak_to_peak_47m = [8,7.2,7.2]; % Array of voltage peak—to-peak values for 20 meters
voltage_peak_to_peak_94m [7.2,6.4,6.4]; % Array of voltage peak—to-peak values for 30 meters
voltage_peak_to_peak_14Im = [5.6,5.6,4.8]; % Array of voltage peak—to-peak values for 40 meters

% Calculate the average voltage peak—to—-peak values
voltage_peak_to_peak_average = [
mean( voltage_peak_to_peak_Om),
mean(voltage_peak_to_peak_47m),
mean(voltage_peak_to_peak_94m),
mean(voltage_peak_to_peak_141m)

1s

% Calculate attenuation assuming 10m is the input voltage
attenuation = voltage_peak_to_peak_average / voltage_peak_to_peak_Om (1);

% Calculate attenuation in dB
attenuation_dB = 20 % loglO(voltage_peak_to_peak_average / voltage_peak_to_peak_Om(1));

% Plot the graph
figure;

% Plot voltage peak—to—peak values on the left y-axis

yyaxis left;

plot(cable_lengths , voltage_peak_to_peak_average, '—o’, ’'LineWidth’, 1.5); % Plot the voltage peak—to—peak values
xlabel (*CablemLengthm(m)’); % X-axis label

ylabel (’ VoltagemPeak—to—Peak’); % Left y—axis label

xticks (cable_lengths ); % Set x—axis tick positions

grid on; % Show grid

% Add a trend line for the voltage peak—to—-peak values using only the last 3 data points

hold on;
last_three_lengths = cable_lengths(2:end); % Last three cable lengths
last_three_averages = voltage_peak_to_peak_average (2:end); % Last three average voltage peak—to—-peak values

p = polyfit(last_three_lengths , last_three_averages, 1); % Fit a linear polynomial to the last three points
f = polyval(p, cable_lengths); % Evaluate the polynomial over all cable lengths for the trend line
plot(cable_lengths , f, '—k’, 'LineWidth’, 1.5); % Plot the trend line in black

% Calculate where the trendline intercepts the x—axis for a specific y-value (arbitrary y-value of 0)
y_value = 0.5;

intercept_x = (y_value — p(2)) / p(l); % Calculate the x—value where y equals the arbitrary value (0 in this case)

% Display the intercept value under the trendline

text (50, polyval (p,50)— 1,sprintf(’0.5vmatm%.2fmm’ ,intercept_x), ’HorizontalAlignment’, left’,” VerticalAlignment’, top’, Margin’ ,5);

hold off;

% Plot attenuation in dB on the right y—axis

yyaxis right;

plot(cable_lengths , attenuation_dB, ’—o’, ’LineWidth’, 1.5); % Plot the attenuation in dB
ylabel (* Attenuationm(dB)’); % Right y-axis label

title (’SignalmAttenuationmIncreasemOvermDistance’); % Title



